

# Kentucky Teachers' Retirement System Funding Working Group

#### "Actuarial Session #1"

Presented by Ed Koebel, FCA, EA, MAAA July 31, 2015





#### What Impacts Contribution Rates?



- Just about everything that happens to the System or its members
  - System assets
    - Return on Market Value of Assets
    - Deferred experience in smoothing method
    - Contributions to System (shortfall and lag)
  - System Liabilities
    - All demographic experience
      - ✓ Salaries
      - ✓ Retirement
      - ✓ Death
      - ✓ Termination
      - ✓ Disability
    - Changes in actuarial assumptions
    - Changes in actuarial methods



#### **Table of Contents**



- Actuarial 101
- KTRS Funding Position
- ➤ Asset Liability Results
- Pension Obligation Bonds





### **Actuarial 101**



#### **Key Concept: Present Value**



- Actuarial calculations typically involve determining a "present value"
- Present value: equivalent value, in today's dollars, of a stream of future payments
- ➤ In other words, how much money would you need today (based on your assumptions) to make the <a href="mailto:expected">expected</a> payments in the future?
  - Time value of money is dependent on the assumed investment return/interest rate
  - Inverse relationship: Higher interest rate = lower present value
  - Expected payments involve probability of certain events occurring



#### **Present Value**



Example: You owe \$1,000 to 100 people one year from now. Each person is 70 years old. You expect an 8% return and the chance each person will be alive in one year is 98%. What is the present value of the debt?

$$100 \times \frac{\$1,000}{1.08} \times 98\% = \$90,741$$

Observation: Under what circumstances will you have exactly enough money to pay the debt?



#### **Application to Pensions**



#### Events to Consider in Actuarial Present Value

- Mortality
- Interest Rate
- Retirement
- Withdrawal
- Disability
- Salary Increases
- Cost of Living Adjustments



#### Funding Equation: C + I = B + E





Pay as you go funding accomplishes this in each year

Actuarial funding accomplishes this over the life of the plan



#### **Basic Funding Methods**







Under actuarial funding excess contributions in early years are invested, and the investment income is used to pay benefits in later years.



#### **Historical View of KTRS Data**







#### The Actuarial Valuation



- ➤ A set of projections and measurements to determine whether the plan is "on track" to becoming fully funded over a specific time period
- ➤ Goal is to accumulate assets while members are working which are sufficient to pay the benefits once member retires
- Develops a contribution rate to meet specified funding goals



### **Key Elements of the Actuarial Valuation**







#### **Retirement System Liabilities**



- Once we know "who" is or may be entitled to benefit payments from the plan, we need to address:
  - When?
  - How much?
  - How long?
- The promise to pay benefits in the future constitutes the system "liabilities"



#### **Normal Cost**



- ➤ The normal cost generally represents the portion of the cost of projected benefits for actives allocated to the current plan year.
- Pension costs are paid over the life of an employee's career. With investment, the assets should pay for a lifetime annuity.
- Normal cost usually is a percent of payroll.



#### **Actuarial Liability**



- ➤ Portion of Total Liability (Present Value of Future Benefits) allocated by the cost method to Years of Service already worked
- Amount that would have accumulated today from prior normal cost payments if all assumptions had been met in the past
- "Funding Target" based on actuarial cost method
- ➤ <u>NOT</u> the value of benefits actually earned includes component of future service and salary



#### **Unfunded Actuarial Liability**



- Unfunded actuarial liability (UAL) = Actuarial Liability less Actuarial Assets
- The existence of an UAL does not <u>automatically</u> mean the system is "underfunded"
- Long term debt
  - Key question is affordability of payments to eliminate it
- Must be financed in addition to the ongoing cost for actives (normal cost) in order to reach fully funded status



### Financing of Retirement Benefit Promises



(\$ millions)



**Actuarial Liability:** 

**Present Value of Future Normal Cost:** 

\$30,184.4

\$5,469.1



## Allocation of Contribution Rate Non-University



|             | Total  |                              |                    |                  |                     |
|-------------|--------|------------------------------|--------------------|------------------|---------------------|
| Val<br>Year | Normal | UAL**                        | Total              | Member<br>Rate * | Employer<br>Rate *  |
| 2010        | 17.21  | $1\overline{6.16}^{\dagger}$ | 33.37 <sup>†</sup> | 9.105            | 24.265 <sup>†</sup> |
| 2011        | 15.05  | 18.90 <sup>†</sup>           | $33.95^{\dagger}$  | 9.105            | 24.845 <sup>†</sup> |
| 2012        | 15.15  | <b>20.70</b> <sup>†</sup>    | 35.85 <sup>†</sup> | 9.105            | 26.745 <sup>†</sup> |
| 2013        | 15.81  | 22.49 <sup>†</sup>           | $38.30^{\dagger}$  | 9.105            | 29.195 <sup>†</sup> |
| 2014        | 16.72  | 22.21 <sup>†</sup>           | 38.93 <sup>†</sup> | 9.105            | 29.825 <sup>†</sup> |

<sup>\*</sup> Excludes Life and Medical

<sup>\*\*</sup> Assumes 30 year amortization period for payment of UAL

<sup>†</sup> Less 1% for Members Hired Before July 1, 2008

<sup>\*\*</sup>Non-University Statutory Rates for Pension is 12.325%\*\*



#### **Schedule of Employer Contributions**



| Fiscal Year<br><u>Ending</u> | Annual Required<br>Contributions | Actual Employer<br><u>Contributions</u> | Percentage<br><u>Contributed</u> |
|------------------------------|----------------------------------|-----------------------------------------|----------------------------------|
| 2009                         | \$600,282,735                    | \$442,549,935                           | <b>74%</b>                       |
| 2010                         | 633,938,088                      | 479,805,088                             | 76                               |
| 2011                         | 678,741,428                      | 1,037,935,993*                          | 153                              |
| 2012                         | 757,822,190                      | 557,339,552                             | 74                               |
| 2013                         | 802,984,644                      | 568,233,446                             | 71                               |
| 2014                         | 823,446,156                      | 563,326,249                             | 68                               |

<sup>\*</sup>Includes Pension Obligation Bond proceeds of \$465,384,165



## **State Required Increase Contribution Rates**



| Valuation                | Fiscal Year | <u>Increase</u> | Cumulative               | In Dollars   |
|--------------------------|-------------|-----------------|--------------------------|--------------|
| <u>Date</u><br>6/30/2004 | 6/30/2007   | 0.11%           | <u>Increase</u><br>0.11% | \$ 3,174,600 |
| 6/30/2005                | 6/30/2008   | 1.21            | 1.32                     | 38,965,900   |
| 6/30/2006                | 6/30/2009   | 0.56            | 1.88                     | 60,499,800   |
| 6/30/2007                | 6/30/2010   | 0.58            | 2.46                     | 82,331,200   |
| 6/30/2008                | 6/30/2011   | 1.13            | 3.59                     | 121,457,000  |
| 6/30/2009                | 6/30/2012   | 2.22            | 5.81                     | 208,649,000  |
| 6/30/2010                | 6/30/2013   | 1.46            | 7.27                     | 260,980,000  |
| 6/30/2011                | 6/30/2014   | 0.75            | 8.02                     | 299,420,000  |
| 6/30/2012                | 6/30/2015   | 2.40            | 10.42                    | 386,400,000  |
| 6/30/2013                | 6/30/2016   | 2.55            | 12.97                    | 487,400,000  |
| 6/30/2014                | 6/30/2017   | 0.83            | 13.80                    | 520,372,000  |





### **Asset/Liability Results**



## **Current Funding Statutory Contributions Only**







#### KTRS Funding Policy



- ➤ New Policy adopted by Board in 2014
- Closes amortization period for "Legacy UAL" beginning June 30, 2014 at 30 years
- All new sources of UAL will be amortized over a closed 20 year period
  - Benefit changes
  - Assumption and Method Changes
  - Experience Gains and Losses
- ➤ Goal of policy is to reach 100% by 2044



#### Funding – ARC vs. Statutory









### **Pension Obligation Bonds**



## What is a Pension Obligation Bond?



- > Bond issued by pension plan sponsor.
- Proceeds contributed to the pension plan.
- Considered an interest rate arbitrage by IRS so interest payments to investors are taxable.
- Generally exchanging a variable rate obligation (unfunded accrued liability or a portion thereof) for a fixed rate obligation (POB).



#### **House Bill 4**



- Introduced this past legislation period.
- ➤ Basically would have provided funding notes in an amount not to exceed \$3.3 Billion in fiscal year 2015-2016 to finance pension obligations.
- ➤ Also would have required State to pay additional contributions needed to fund KTRS pension on actuarially sound basis by phasing into full contribution rates over a 7 year period beginning 2016-2017 fiscal year.



#### **House Bill 4**







#### **House Bill 4**



